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Abstract. The Monte Carlo renormalisation group method is applied to discussing the 
nature of the phase transition of the X Y  model on a two-dimensional random triangular 
lattice. A line of fixed points and a non-universal phase transition have been found, in 
agreement with Kosterlitz-Thouless theory. 

1. Introduction 

The idea of quantising field theory on a random lattice has been proposed by Christ, 
Friedberg and Lee [ 11. It has the advantages of preserving the translational invariance 
and Lorentz invariance of the continuous theory which are explicitly violated on the 
conventional regular lattice. For a theory on a random lattice, similar to the situation 
on a regular lattice, the scaling limit is defined as the renormalisation continuous limit 
of the theory. This scaling limit corresponds to one of the critical points of the system. 
In this paper, using the Monte Carlo renormalisation group (MCRG) method, we 
investigate phase transition and critical properties of the X Y  model on a two- 
dimensional random triangular lattice. The Hamiltonian of the XY model can be 
written as 

H = - p  JVSi * Sj 
(ij) 

= -p C J~ COS( ei - e,) (1) 
(ij) 

where Si = (cos Bi, sin O i )  is a spin variable defined on the ith lattice site. .Iij > 0 are 
the ferromagnetic interaction weights; here we assume that they are normalised, i.e. 
(1/ NI) Z,,, Jij = 1 where NI is the number of links. The sum is taken over all nearest- 
neighbour bonds. 

This model has been studied extensively for several years. The most important 
result is the theorem proved by Mermin and Wagner [2], which pronounces that this 
model cannot develop a spontaneous ferromagnetic order at any non-zero temperature. 
This proof can be generalised to the random lattice explicitly. So the conventional 
order-disorder critical phase transition is forbidden in this system. However, the 
correlation functions at high and low temperature which are obtained from the high- 
temperature expansion and the one-loop perturbation expansion, respectively, demon- 
strate different asymptotic behaviours. This suggests that the system should undergo 
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a phase transition in spite of the absence of the ferromagnetic order. Kosterlitz and 
Thouless ( KT) proposed an  intuitive mechanism for this phase transition: the breaking 
of vortex pairs [3]. Under the Villain approximation, this model is equivalent to the 
spin wave plus two-dimensional neutral Coulomb gas system (SWCG). Treated as a 
SWCG model, using a renormalisation group ( RG)  analysis, Kosterlitz got some quantita- 
tive results for the X Y  model. 

This model would undergo a phase transition from a high-temperature short-range 
correlation phase to a low-temperature long-range correlation phase. There is a 
fixed-point line above the phase transition point pc.  Near or  above P c ,  we have the 
critical behaviour of the correlation length 

P ” P c  

where U and A > 0. It immediately leads to the conclusion that P c  is an  infinite-order 
phase transition point, because the scaling part of the free energy density is f s ( P )  - 
K d ( P ) ,  so 

From (2), using a scaling argument, one can show that the susceptibility has the critical 
behaviour 

where y >  0 and satisfies the scaling law y = u ( 2 -  ~ ( p , ) ) ,  in which the universal 
constant ~ ( p )  is the scaling dimension at Pc .  On the regular square lattice, the KT 

theory gives the result A =f [4]. 
In this paper, we use the MCRG method on a two-dimensional random triangular 

lattice to find whether the non-trivial Pc exists, and what the value of A should be. 

2. MCRG method and Ap function 

The MCRG method is a numerical method which combines the idea of the real space 
renormalisation group with the Monte Carlo simulation [5]. It provides a direct way 
to study the critical phenomena of a system. In the real space renormalisation group 
method, starting from a n  initial Hamiltonian H({S}), one gets a new effective Hamil- 
tonian H’( { S ’ } )  through the transformation 

and 

where { S ’ }  is the blocked configuration which describes the mean block properties of 
the original configuration { S } .  
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Using MC simulation, one can get a series of configurations { S } , ,  i = 1,2,. . . , N, 
which satisfy the canonical distribution exp[ - H ( { S } ) ] .  From a given configuration 
{ S } ,  one can get, with the RG method, a set of configurations {S ' } ] , ,  j ,  = 1,2,. . . , m, 
whichsatisfiesthedistributionP({S'),{S},). So,accordingto(5),{S'),,(jr = 1,2,. . . , m; 
i = 1,2,. . . , N )  would satisfy the canonical distribution exp(-H'({S'})). Thus the 
ensemble average of any physical quantity, before and after the renormalisation 
transformation, can be obtained from the arithmetic average on {S ' }  and { S }  respec- 
tively, if N is sufficiently large. 

In the MCRG method, one usually determines the so-called Ap function first. 
Consider a block transformation which erases away all the short-distance characters 
s f  the system with a scale b ( b  > l), then after k time transformations only the characters 
above the scale b k  are preserved. For sufficiently large k, we define the Ap function by 

r ( p ) ( k )  =r(p - A p ( p ) ) ( k - l l  ( 7 )  
where F ( / 3 ) ( k )  denotes any physical result after k time RG transformations and it 
describes the nature of the system above the scale bk.  Equation ( 7 )  is called the 
matching condition. It is clear that for a critical point pc one should have 

A P ( P , )  = 0. (8) 

If there is only one relevant parameter, the inverse temperature p, this matching process 
can be demonstrated by figure 1. In figure 1, RT denotes the renormalisation trajectory, 
p- '  = p i '  is the critical surface and ct is an irrelevant parameter. We choose the initial 
Hamiltonian to be the standard form, H ( p ,  LY = 0). Starting from this standard form, 
after some time RG transformation, the RG flow line would be attracted to the RT, and 
then they will leave from the critical surface along the RT (suppose p # pC).  Adjusting 
A@, the matching condition (7) can be satisfied and the correlation lengths satisfy 

a 

Figure 1. A matching process is illustrated in a two- 
dimensional coupling-constant space. The renor- 
malisation trajectory ( RT) attracts the effective 
Hamiltonian obtained from the standard Hamil- 
tonian H ( p ,  a = 0) after some time RC transforma- 
tions. p-' = p i '  is the critical surface and c is the 
critical fixed point. (Y is an irrelevant parameter. 

Figure 2. A two-dimensional random triangular lat- 
tice with 40 sites. 
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For a finite-order phase transition point P c ,  the correlation length would display 
the asymptotic behaviour 

5 ( P )  - I P c - P I - ” .  (10) 

AP ( P  ) = ( b ” ” - 1 1 ( P C  - P 1 (11) 

Thus, from (9 ) ,  we get the asymptotic behaviour of Ap near P c ,  

v >  0, P - P C .  

For a non-trivial critical phase transition point with the asymptotic behaviour like 
equation (2), we have 

where v and A > 0. 
So, from the asymptotic behaviour of the A@ function, we can determine the value 

of A and the place of Pc and thus say something about the type of the phase transition. 
In the MCRG method, to diminish the effect of the finite lattice size, one usually 

uses the method proposed by Wilson. That is, one uses two different lattices which 
have similar geometric structures and linear dimensions L and L/ b respectively, where 
b is the scale used in the RG transformation. The geometric structures of the lattices 
given by the k time blockings on the large lattice and k - 1 times on the small one are 
identical. Thus, the matching equation should be 

In fact, the number of blocking times is limited by the finite size of the lattice (clearly, 
k cannot be greater than In L/ln b ) .  So the matching condition may not be satisfied. 
There are three ways to solve this problem. The first is to use a improved initial 
Hamiltonian, which is chosen as close to the RT as possible, instead of the standard 
one [6]. Another way is to use some improved observable quantities which have good 
low-temperature behaviour [7]. We use the third method, the improved RG transforma- 
tion method [7]. Because the RT and the position of the fixed point on the critical 
surface are dependent on what RG transformation is used, we can choose a suitable 
RG transformation whose RT and fixed point are close to the initial standard Hamil- 
tonian. Clearly, the number of transformation types which can be used is very large. 
We can choose a one-parameter subset in all of these RG transformations, and then 
find an optimal value for this parameter. In our calculation, we use the RG transforma- 
tion as follows: 

where 

and mi, is the corresponding block. When a + 00 this transformation would become 
the standard blocked transformation 



MCRG study of the X Y  model on a 20 random triangular lattice 4183 

The parameter a should be optimised. This can be done by setting Ap to meet the 
scaling behaviour on the critical region, which is the low-temperature region in our 
case and where perturbation theory can be used if the temperature is sufficiently low. 

The matching condition, when there is a free parameter a, can be written as 

Thus, on the 

However, on the level of the spin-wave approximation, the A p  should be zero. Thus 
the optimisation value of the parameter a should be 

b-2k 

a ( k ) ( L )  - (Y(k-I)(L/b) a = @ =  P. 

3. The numerical results 

We use two random triangular lattices which have 320 and 160 sites respectively, and 
satisfy the periodic boundary condition (a random triangular lattice is illustrated in 
figure 2 ) .  The interaction weights are set to one. The blocking procedure is as follows. 
We first pick out 160 sites randomly from the 320 sites of the large lattice. These 160 
sites will be used as the sites of both the unblocked small lattice and the first time 
blocked large lattice. Then we pick out 80 sites randomly from the above 160 sites 
and they will be used as the sites of both the first time blocked small lattice and the 
second time blocked large lattice; repeating the above procedure successively, we will 
get the k time blocked lattice and the ( k  - 1) time blocked small one. Clearly, at any 
stage of the above blocking procedure, the two blocked lattices are identical in their 
geometric structure and the block scale factor b is a. 

The canonical ensemble averages are obtained from the Monte Carlo method. The 
sweep-to-sweep autocorrelation function, defined as [ 81 

/ \ - 1  

is shown in figure 3. It is clear that the autocorrelation is very small after 3-5 sweeps 
and the independent configurations are generated by 3-5 sweeps (in the crossover 
region, the autocorrelation function is larger than one in the other region, but after 10 
sweeps it is near to a zero). Starting from the equilibrium states which we got in 
another work, we perform 9000 and 7000 sweeps of heat bath iterations to get various 
averages on large and small lattices respectively. The statistical error in r is given by 
[91 

Ar =J((r2)-(r)z)/(N- 1) (21) 

where N is the number of independent configurations. In our calculations, the 
independent configurations are generated by 3-5 sweeps; AT is about 0.002. The 
transformation (14)  is also performed using the MC method, in which U is set to be 
12.5 to fit the result that A p  = 0 at large p. 
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Figure 3. The autocorrelation functions for separation of sweeps at p = 0.78 and p = 0.55. 

We recorded the expectation values of four different spin correlation functions as 
follows: 

where i and J are defined as follows. The simplexes A,,; and Ai , i  are two triangles 
which take the link ij as their common edge. 

The results of rHn(p)  after four and three time improved renormalisation group 
transformations on the large and small lattices, respectively, are shown in figure 4. 
From these results, using the linear interpolation method and (17), we can get the 
values of Ap(p) which are shown in figure 5 .  The other three correlation functions 
r=(p), rfl,,&3) and rnn2(P) reveal a similar asymptotic behaviour. Using the non- 
universal type Ap given by (12), we found that if pc is in the region 0.76-0.77 and A 
is in the region 0.35-0.90 then it can fit in with the results of the Monte Carlo method 
in the asymptotic region [IO]. In the KT theory A =f. 

The unblocked -2F,,,,(p) is just the average energy per spin, i.e. 

The Monte Carlo results for E ( p )  which are obtained from large and small lattices 
respectively are shown in figure 6. It shows that the E ( p )  curves are very smooth. 
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Figure 4. The results of r,,,,(p) after four and three time improved RG transformations on 
large and small lattices respectively. The results are displayed for C = 2.5 and N = 320 
(O) ,  N = 160 (0). 

1 ,  
0.68  0.70 0.72 0.74 0.76 0.78 

P 

Figure5. The Ap(p) areobtained from the r,,n(p)k41 
and rn,,(p):31, using the linear interpolation method. 
The full curve shows the result of A = 0.6 and p, = 

0.77. 

. N.320 

0 2 -  

0 2  0 4  0 6  0 8  

P 
Figure 6. The Monte Carlo results of E @ ) /  N ,  on 
large and small lattices. It  is clear that the shape of 
the energy density illustrates no size dependence. 
The statistical error is less than 0.002. 

From figure 6 we can determine the specific heat per spin 

and the third or some higher-order derivatives of the average free energy per spin. 
With the difference technique, we can get the specific heat per spin which is illustrated 
in figure 7. It also shows that the peak of the c, has no divergent tendency as the 
lattice size increases. It is clear that, in all the regions of p, the E ( P )  and c, obtained 
from two lattices with different lattice size nearly coincide with each other, it seems 
that the higher-order derivatives of E with respect to p could be undivergent. This 
fact is consistent with the conclusion we got before that Ap can fit with the non-universal 
type of asymptotic behaviour (12). 

We have also measured another two quantities on the large and the small lattices 
respectively, they are the susceptibility per spin x ( p )  and the density of vortex pairs 
p , ( p ) .  According to the Mermin-Wanner theorem, we can write out the susceptibility 
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Figure 7. The Monte Carlo results of specific heat density. It also illustrates no size 
dependence. The diffrence of the peak of the c, is within the limit of error. 

Figure 8 displays the results for ~ ( p ) ,  it is clear that in the large-P region, x ( P )  reveals 

Figures. The Monte Carlo results of,y,,,(P). It shows 
the size-dependent divergence of ,y,,,(p) in the large- 
p region. 

Figure9. The logarithm ofvortex pair density plotted 
against p for a lattice with 320 sites. The slope of 
the full line is -10.7. 
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a significant divergence tendency as No increases, while in the small-p region x ( p )  is 
independent of N o .  

Figure 9 is the result for p , ( p ) ,  where 

P , ( P )  = (Q+)p/N2 (29) 
and Q+ is the total number of the positive vortices in a given configuration. Let AVk 
denote a two-dimensional fundamental simplex of the lattice, then AVk is a triangle 
with links ( i j ) ,  ( j k )  and (ki) as three of its edges and x,, x, and xk as its vertices, 
respectively, and N2 is the number of triangles. If ( i j )  is a link of the lattice, then we 
define the multivalue angle variables 0, by 

o, -0, = e, - e, + 2 4  (30) 
where I ,  = 0, *l, 1 2 , .  , . characterise the monovalue sectors of the difference 0,  -ej .  
Thus, the vortex number in the triangle AVk is defined by 

q v k  =(0,-0~+0,-0,+0,-0,)/2.rr 

= I r j  + J k  + I k i  

=O,*l, * 2 , . .  . .  . (31) 
In Monte Carlo simulation, we consider only the case l q y k l  G 1. So IV can be determined 
by the restriction condition 

lO, -O, lS .r .  (32) 
According to the KT theory, in the low-temperature region one should have pp- 

exp(-2pp) where 2 p  is the energy necessary to create a vortex pair. A plot of In pp 
against p is shown in figure 9. As can be seen, at low temperature In pp is proportional 
to p with the slope -2p = -10.7 * 2.3, which is consistent with the value estimated by 
KT of 2 p  = 10.2 [4]. 

To sum up, in this paper we have studied the behaviour of the Ap function of the 
X Y  model by using the Monte Carlo renormalisation group method. We obtained a 
fixed point line structure for the X Y  model on a two-dimensional random triangular 
lattice. We have also calculated the energy, specific heat, susceptibility and the density 
of vortex pairs for this model. Our results are consistent with the KT theory and the 
Monte Carlo results on the regular square lattice. We conclude that the X Y  model 
on a two-dimensional random triangular lattice should undergo a phase transition. 
This transition is an infinite-order one; the energy per spin and the specific heat per 
spin do not have a size-dependent behaviour. However, the susceptibility shows a 
clear size-dependent behaviour in the low-temperature region. This means that it 
should be divergent in this region. The density of vortex pairs is exponentially 
dependent on p. 
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